Synergy of Liquid‐Crystalline Small‐Molecule and Polymeric Donors Delivers Uncommon Morphology Evolution and 16.6% Efficiency Organic Photovoltaics

2020 
Achieving an ideal morphology is an imperative avenue for enhancing key parameters toward high-performing organic solar cells (OSCs). Among a myriad of morphological-control methods, the strategy of incorporating a third component with structural similarity and crystallinity difference to construct ternary OSCs has emerged as an effective approach to regulate morphology. A nematic liquid-crystalline benzodithiophene terthiophene rhodamine (BTR) molecule, which possesses the same alkylthio-thienyl-substituted benzo moiety but obviously stronger crystallinity compared to classical medium-bandgap polymeric donor PM6, is employed as a third component to construct ternary OSCs based on a PM6:BTR:Y6 system. The doping of BTR (5 wt%) is found to be enough to improve the OSC morphology-significantly enhancing the crystallinity of the photoactive layer while slightly reducing the donor/acceptor phase separation scale simultaneously. Rarely is such a morphology evolution reported. It positively affects the electronic properties of the device-prolongs the carrier lifetime, shortens the photocurrent decay time, facilitates exciton dissociation, charge transport, and collection, and ultimately boosts the power conversion efficiency from 15.7% to 16.6%. This result demonstrates that the successful synergy of liquid-crystalline small-molecule and polymeric donors delicately adjusts the active-layer morphology and refines device performance, which brings vibrancy to the OSC research field.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    27
    Citations
    NaN
    KQI
    []