The 3-ketoacyl-CoA thiolase: an engineered enzyme for carbon chain elongation of chemical compounds.

2020 
Because of their function of catalyzing the rearrangement of the carbon chains, thiolases have attracted increasing attentions over the past decades. The 3-ketoacyl-CoA thiolase (KAT) is a member of the thiolase, which is capable of catalyzing the Claisen condensation reaction between the two acyl-CoAs, thereby achieving carbon chain elongation. In this way, diverse value-added compounds might be synthesized starting from simple small CoA thioesters. However, most KATs are hampered by low stability and poor substrate specificity, which has hindered the development of large-scale biosynthesis. In this review, the common characteristics in the three-dimensional structure of KATs from different sources are summarized. Moreover, structure-guided rational engineering is discussed as a strategy for enhancing the performance of KATs. Finally, we reviewed the metabolic engineering applications of KATs for producing various energy-storage molecules, such as n-butanol, fatty acids, dicarboxylic acids, and polyhydroxyalkanoates. KEY POINTS: • Summarize the structural characteristics and catalyzation mechanisms of KATs. • Review on the rational engineering to enhance the performance of KATs. • Discuss the applications of KATs for producing energy-storage molecules.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    109
    References
    4
    Citations
    NaN
    KQI
    []