Polarizable Force Field for Molecular Ions Based on the Classical Drude Oscillator

2018 
Development of accurate force field parameters for molecular ions in the context of a polarizable energy function based on the classical Drude oscillator is a crucial step toward an accurate polarizable model for modeling and simulations of biological macromolecules. Toward this goal we have undertaken a hierarchical approach in which force field parameter optimization is initially performed for small molecules for which experimental data exists that serve as building blocks of macromolecular systems. Small molecules representative of the ionic moieties of biological macromolecules include the cationic ammonium and methyl substituted ammonium derivatives, imidazolium, guanidinium and methylguanidinium, and the anionic acetate, phenolate, and alkanethiolates. In the present work, parameters for molecular ions in the context of the Drude polarizable force field are optimized and compared to results from the nonpolarizable additive CHARMM general force field (CGenFF). Electrostatic and Lennard-Jones paramete...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    25
    Citations
    NaN
    KQI
    []