Label-Free Potentiometric Aptasensing Platform for the Detection of Pb2+ Based on Guanine Quadruplex Structure

2019 
Abstract Potentiometric aptasensors enhanced by integrating advanced nanomaterials are of particular interest for the detection of multiplex species (e.g., proteins, bacteria, micro-organisms) due to their low cost, ease of operation, and low detection limits. However, potentiometric detection of small ionic species aptasensors is still challenging. This article describes the first example of a label-free G-quadruplex-based potentiometric aptasensing platform for the detection of Pb2+. Polyion oligonucleotide-labeled gold nanoparticles (AuNPs-DNA) as probes are modified on Au electrode, providing high-density negative charge on the electrode surface. These signal-amplifying probes can selectively form G-quadruplexes with the presence of Pb2+ ions and reduce the negative charges on the electrode surface, hence achieving potentiometric detection of Pb2+ ions with high selectivity. The AuNPs-DNA-based aptasensor shows an acceptable sensitivity over a wide range from 10−11 to 10−6 M with a detection limit of 8.5 pM. Furthermore, confirmed by coupled plasma mass spectrometry, the sensing platform is capable of performing effective and accurate detection of Pb2+ level in real water samples. The presented aptasensor offers a fast, convenient, low-maintenance, and highly sensitive alternative for on-site water pollution detections.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    8
    Citations
    NaN
    KQI
    []