Development of a Bayesian Belief Network Model for personalized prognostic risk assessment in colon carcinomatosis.

2011 
Abstract Multimodality therapy in selected patients with peritoneal carcinomatosis is gaining acceptance. Treatment-directing decision support tools are needed to individualize care and select patients best suited for cytoreductive surgery +/- hyperthermic intraperitoneal chemotherapy (CRS +/- HIPEC). The purpose of this study is to develop a predictive model that could support surgical decisions in patients with colon carcinomatosis. Fifty-three patients were enrolled in a prospective study collecting 31 clinical-pathological, treatment-related, and outcome data. The population was characterized by disease presentation, performance status, extent of peritoneal cancer (Peritoneal Cancer Index, PCI), primary tumor histology, and nodal staging. These preoperative parameters were analyzed using step-wise machine-learned Bayesian Belief Networks (BBN) to develop a predictive model for overall survival (OS) in patients considered for CRS +/- HIPEC. Area-under-the-curve from receiver-operating-characteristics curves of OS predictions was calculated to determine the model's positive and negative predictive value. Model structure defined three predictors of OS: severity of symptoms (performance status), PCI, and ability to undergo CRS +/- HIPEC. Patients with PCI 20, who were not considered surgical candidates. Cross validation of the BBN model robustly classified OS (area-under-the-curve = 0.71). The model's positive predictive value and negative predictive value are 63.3 per cent and 68.3 per cent, respectively. This exploratory study supports the utility of Bayesian classification for developing decision support tools, which assess case-specific relative risk for a given patient for oncological outcomes based on clinically relevant classifiers of survival. Further prospective studies to validate the BBN model-derived prognostic assessment tool are warranted.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    26
    Citations
    NaN
    KQI
    []