Active tectonics of the Yizre'el valley, Israel, using high-resolution seismic reflection data

2004 
Abstract We present a series of high-resolution seismic reflection lines across the Yizre'el valley, which is the largest active depression in Israel, off the main trend of the Dead Sea rift. The new seismic reflection data is of excellent quality and shows that the valley is dissected into numerous small blocks, separated by active faults. The Yizre'el valley is found to consist of a series of half grabens, rather than a single half graben, or a symmetrical graben. The faults are generally vertical and appear to have a dominant strike-slip component, but some dip-slip is also evident. A marked zone of compression near Megido is associated with the intersection of the two largest faults in the valley, the Carmel fault and the Gideon fault. Variable trend of the faults reflects the complexity of the local geology along the boundary between the wide NW–SE trending Farah–Carmel fault zone and the E–W trending basins and ranges in the Lower Galilee. This tectonic complexity is likely to result from a highly variable stress pattern, modified by the structures inside it. Normal faulting in the valley occurred at an early stage of its development as a tectonic depression. However, strike-slip motion on the Carmel fault, and possibly also on some of the other faults, appears to have started together with the onset of normal faulting. Earthquake hazard in the area appears to be uniform as faults are distributed throughout the Yizre'el valley.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    17
    Citations
    NaN
    KQI
    []