PRKACA mutations in cortisol-producing adenomas and adrenal hyperplasia: a single-center study of 60 cases

2015 
Objective: Cortisol excess due to adrenal adenomas or hyperplasia causes Cushing’s syndrome. Recent genetic studies have identified a somatic PRKACA L206R mutation as a cause of cortisol-producing adenomas. We aimed to compare the clinical features of PRKACA-mutant lesions with those of CTNNB1 mutations, and to search for similar mutations in unilateral hyperplasia or tumors co-secreting aldosterone. Design, patients, and methods: In this study, 60 patients with cortisol excess who had adrenalectomies at our institution between 1992 and 2013 were assessed, and somatic mutations were determined by Sanger sequencing. A total of 36 patients had overt Cushing’s syndrome, the remainder were subclinical: 59 cases were adenomas (three bilateral) and one was classified as hyperplasia. Four tumors had proven co-secretion of aldosterone. Results: Among cortisol-secreting unilateral lesions without evidence of co-secretion (nZ52), we identified somatic mutations in PRKACA (L206R) in 23.1%, CTNNB1 (S45P, S45F) in 23.1%, GNAS (R201C) in 5.8%, and CTNNB1CGNAS (S45P, R201H) in 1.9%. PRKACA and GNAS mutations were mutually exclusive. Of the co-secreting tumors, two (50%) had mutations in KCNJ5 (G151R and L168R). The hyperplastic gland showed a PRKACA L206R mutation, while patients with bilateral adenomas did not have known somatic mutations. PRKACA-mutant lesions were associated with younger age, overt Cushing’s syndrome, and higher cortisol levels vs non-PRKACA-mutant or CTNNB1-mutant lesions. CTNNB1 mutations were more significantly associated with right than left lesions. Conclusions: PRKACA L206R is present not only in adenomas, but also in unilateral hyperplasia and is associated with more severe autonomous cortisol secretion. Bilateral adenomas may be caused by yet-unknown germline mutations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    49
    Citations
    NaN
    KQI
    []