Reliability study of MANOS with and without a SiO 2 buffer layer and BE-MANOS charge-trapping NAND flash devices

2009 
The reliability of MANOS devices with an oxide buffer layer (MAONOS) in between SiN trapping layer and high-K Al 2 O 3 top dielectric is extensively studied. We conclude that the primary function of high-K Al 2 O 3 is to suppress the gate electron injection during erase instead of increasing the P/E speed. As a result, inserting a buffer oxide only changes EOT but does not change the P/E mechanisms. On the other hand, the buffer oxide can greatly improve data retention by suppressing leakage through Al 2 O 3 . However, owing to the slow erase performances with a thick bottom oxide, both MANOS and MAONOS erase slowly and very high erase voltages must be used. Also, both MANOS and MAONOS devices show very fast endurance degradation below P/E≪10, which is inherent due to electron de-trapping mechanism. Moreover, the large erase voltage also causes severe degradation of tunnel oxide after many P/E cycling. To get both speed and reliability performances, it is necessary to introduce bandgap engineered tunneling barrier (BE-MANOS) to solve the fundamental problems of MANOS.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    6
    Citations
    NaN
    KQI
    []