An interdisciplinary approach at studying the Earth-Sun system with GPS/GNSS and GPS-like signals

2005 
The value of the Global Positioning System (GPS) measurements to atmospheric science, space physics, and ocean science, is now emerging or showing a potential to play a major role in the evolving programs of NASA, NSF and NOAA. The objective of this communication is to identify and articulate the key scientific questions that are optimally, or perhaps uniquely, addressed by GPS or GPS-like observations, and discuss their relevance to existing or planned national Earth-science research programs. The GPS-based ocean reflection experiments performed to date have demonstrated the precision and spatial resolution suitable to altimetric applications that require higher spatial resolution and more frequent repeat than the current radar altimeter satellites. GPS radio occultation is promising as a climate monitoring tool because of its benchmark properties: its raw observable is based on extremely accurate timing measurements. GPS-derived temperature profiles can provide meaningful climate trend information over decadal time scales without the need for overlapping missions or mission-to-mission calibrations. By acquiring data as GPS satellites occult behind the Earth's limb, GPS also provides high vertical resolution information on the vertical structure of electron density with global coverage. New experimental techniques will create more comprehensive TEC maps by using signals reflected from the oceans and received in orbit. This communication will discuss a potential future GNSS Earth Observing System project which would deploy a constellation of satellites using GPS and GPS-like measurements, to obtain a) ocean topography measurements based on GPS reflections with an accuracy and horizontal resolution suitable for eddy monitoring, and b) climate-records quality atmospheric temperature profiles. The constellation would also provide for measurements of ionospheric electron density. This is a good example of an interdisciplinary mission concept, with broad science objectives of high societal relevance, all resting on common cost-effective technology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    0
    Citations
    NaN
    KQI
    []