Mineralogy, geochemistry and 40Ar–39Ar geochronology of the Barda and Alech complexes, Saurashtra, northwestern Deccan Traps: early silicic magmas derived by flood basalt fractionation

2019 
Most continental flood basalt (CFB) provinces of the world contain silicic (granitic and rhyolitic) rocks, which are of significant petrogenetic interest. These rocks can form by advanced fractional crystallization of basaltic magmas, crustal assimilation with fractional crystallization, partial melting of hydrothermally altered basaltic lava flows or intrusions, anatexis of old basement crust, or hybridization between basaltic and crustal melts. In the Deccan Traps CFB province of India, the Barda and Alech Hills, dominated by granophyre and rhyolite, respectively, form the largest silicic complexes. We present petrographic, mineral chemical, and whole-rock geochemical (major and trace element and Sr–Nd isotopic) data on rocks of both complexes, along with 40 Ar– 39 Ar ages of 69.5–68.5 Ma on three Barda granophyres. Whereas silicic magmatism in the Deccan Traps typically postdates flood basalt eruptions, the Barda granophyre intrusions (and the Deccan basalt flows they intrude) significantly pre-date (by 3–4 My) the intense 66–65 Ma flood basalt phase forming the bulk of the province. A tholeiitic dyke cutting the Barda granophyres contains quartzite xenoliths, the first being reported from Saurashtra and probably representing Precambrian basement crust. However, geochemical–isotopic data show little involvement of ancient basement crust in the genesis of the Barda–Alech silicic rocks. We conclude that these rocks formed by advanced (70–75 %), nearly-closed system fractional crystallization of basaltic magmas in crustal magma chambers. The sheer size of each complex (tens of kilometres in diameter) indicates a very large mafic magma chamber, and a wide, pronounced, circular-shaped gravity high and magnetic anomaly mapped over these complexes is arguably the geophysical signature of this solidified magma chamber. The Barda and Alech complexes are important for understanding CFB-associated silicic magmatism, and anorogenic, intraplate silicic magmatism in general.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    86
    References
    10
    Citations
    NaN
    KQI
    []