Refractive index of infrared-transparent polycrystalline alumina

2017 
The refractive index of fully dense, infrared-transparent polycrystalline alumina (PCA) with a mean grain size of ∼0.6  μm is reported for the wavelength range 0.85 to 5.0  μm over the temperature range T=296 to 498 K. The temperature-dependent Sellmeier equation is n2−1=(A+B[T2−To2])λ2/[λ2−(λ1+C[T2−To2])2]+Dλ2/(λ2−λ22), where λ is expressed in μm, To=295.15  K, A=2.07156, B=6.273×10−8, λ1=0.091293, C=−1.9516×10−8, D=5.62675, λ2=18.5533, and the root-mean square deviation from measurements is 0.0002. This paper describes how to predict the refractive index of fully dense isotropic PCA with randomly oriented grains using the ordinary and extraordinary refractive indices (no and ne) of sapphire spatially averaged over the surface of a hemisphere. The refractive index of alumina at 296 and 470 K agrees within ±0.0002 with the predicted values. Similarly, the ordinary and extraordinary optical constants ko and ke are used to predict the absorption coefficient of alumina. The refractive indices no and ne of sapphire grown at Rubicon Technologies by the Kyropoulos method were measured at 295 K and agree with published Sellmeier equations for sapphire grown by other methods within ±0.0002.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    15
    Citations
    NaN
    KQI
    []