Highly efficient removal of imidacloprid using potassium hydroxide activated magnetic microporous loofah sponge biochar.

2021 
Abstract Extensive application of imidacloprid (IMI) in pest control and its undesirable removal efficiency enabled it to be a critical global challenge. Low cost, efficient, sustainable and environment-friendly technologies are urgently needed to be developed to remove IMI from water. A novel adsorbent of potassium hydroxide activated magnetic microporous loofah sponge biochar (KOH+Fe/Zn-LBC) was synthesized, as well as its adsorption capacity and mechanisms for IMI were investigated in this study. KOH+Fe/Zn-LBC had the superior pore structure (surface area and pore volume) and its maximum adsorption capacity for IMI could reach 738 mg g−1 at 298 K. Kinetics, isotherms, thermodynamics and characterization analysis suggested that pore filling, hydrogen bonding and π-π conjugation were its main adsorption mechanisms. Additionally, the thermodynamic parameters described that IMI adsorption was a spontaneous, endothermic and less random process. Particularly, the magnetic separation of KOH+Fe/Zn-LBC was beneficial for its reuse. Ultrasound and ethanol co-processing could effectively regenerate the used KOH+Fe/Zn-LBC and maintain its stable sustainable adsorption capacity (99.4% of its fresh adsorption capacity after five reuse cycles). Besides, KOH+Fe/Zn-LBC exhibited a stable adsorption capacity and environmental safety in a wide pH range. Therefore, KOH+Fe/Zn-LBC has the potential to be an efficient, green and sustainable adsorbent for neonicotinoids removal.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    1
    Citations
    NaN
    KQI
    []