Decoupling between the middle and upper crust during transpression-related lateral flow: Variscan evolution of the Aston gneiss dome (Pyrenees, France)

2009 
Abstract We present a structural, AMS, microstructural and kinematic study of the Aston gneiss dome (French Pyrenees), which consists of a core made up of orthogneiss and paragneiss intruded by numerous sills of Carboniferous peraluminous granite. The orthogneiss corresponds to a former Ordovician granitic laccolith. Four Variscan events have been evidenced in this gneiss dome: (i) D1 deformation observed only as relics in the orthogneisses and their country-rocks located above the sillimanite isograd, and characterized by a NS to NE–SW non coaxial stretch associated to top to the south motions (NS convergence); (ii) D2-a deformation observed in the orthogneisses and their country-rocks, mainly migmatitic paragneisses, located below the sillimanite isograd and in the peraluminous granites whatever their structural level, and characterized by an EW to N120°E stretch associated to a top to the east flat shearing (lateral flow in the hot middle crust in a transpressive regime); (iii) D2-b deformation characterized by EW-trending megafolds corresponding to the domes in the middle crust and by EW-trending tight folds with subvertical axial planes in the metasedimentary upper crust; (iv) subvertical medium-temperature mylonitic bands developed by the end of the transpression. The Aston massif is a good example of decoupling between a cold upper crust and a hotter middle crust overheated by a thermal event originated in the upper mantle. This decoupling allowed the lateral flow of the migmatitic middle crust along a direction at high angle with respect to the more or less NS-trending direction of convergence. We suggest that the HT-LP metamorphism developed before the formation of the domes during D2-a, coevally with the emplacement of numerous sills of peraluminous granite, whereas the emplacement of the large calc-alkaline plutons in the upper crust occurred by the end of D2-b . Our data invalidate the previous geodynamical models based on either early or late extensional regime to explain the development of the HT-LP metamorphism. This new interpretation of the dynamics of the Variscan crust of the Pyrenees is consistent with recent studies conducted in Archaean and Palaeoproterozoic hot continental crusts having undergone oblique convergence, and characterized by a competition between vertical thickening and lateral flow induced by the important rheological contrast between two thermally different levels.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    38
    Citations
    NaN
    KQI
    []