Label free and amplified detection of cancer marker EBNA-1 by DNA probe based biosensors

2011 
Abstract Epstein-Barr virus (EBV) is a human herpes virus that has been associated with several malignancies as Burkitt's lymphoma, nasopharyngeal carcinoma and Hodgkin's disease. All EBV associated malignancies showed a distinct viral gene expression pattern, while Epstein-Barr nuclear antigen 1 (EBNA-1) is constitutively expressed in all such disorders. Here, the development of a biosensor to detect EBNA-1 protein is reported, which was based on a nucleic acid bioreceptor and a quartz crystal microbalance with a dissipation monitoring (QCM-D) transducer. The DNA probe for EBNA-1 detection was designed and synthesized to mimic its palindromic target sites in the EBV genome. This DNA probe was immobilized on the Au-surface of a QCM-D electrode, followed by the blocking of the accessible Au-surface with 6-mercapto-1-hexanol (6-MHO). The system showed a limit of detection of 50 ng/mL in direct detection of EBNA-1, however, the sensitivity was improved by 2 orders of magnitude (0.5 ng/mL) when an amplification cascade, employing antibodies labeled with alkaline phosphatase (AP), was applied to the system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    20
    Citations
    NaN
    KQI
    []