Delta- and beta- secretases crosstalk amplifies the amyloidogenic pathway in Alzheimer's disease.

2021 
Asparagine endopeptidase (AEP), a newly identified delta-secretase, simultaneously cleaves both APP and Tau, promoting Alzheimer's disease (AD) pathologies. However, its pathological role in AD remains incompletely understood. Here we show that delta-secretase cleaves BACE1, a rate-limiting protease in amyloid-β (Aβ) generation, escalating its enzymatic activity and enhancing senile plaques deposit in AD. Delta-secretase binds BACE1 and cuts it at N294 residue in an age-dependent manner and elevates its protease activity. The cleaved N-terminal motif is active even under neutral pH and associates with senile plaques in human AD brains. Subcellular fractionation reveals that delta-secretase and BACE1 reside in the endo-lysosomes. Interestingly, truncated BACE1 enzymatic domain (1-294) augments delta-secretase enzymatic activity and accelerates Aβ production, facilitating AD pathologies and cognitive impairments in APP/PS1 AD mouse model. Uncleavable BACE1 (N294A) inhibits delta-secretase activity and Aβ production and decreases AD pathologies in 5XFAD mice, ameliorating cognitive dysfunctions. Hence, delta- and beta- secretases' crosstalk aggravates each other's roles in AD pathogenesis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    0
    Citations
    NaN
    KQI
    []