Susceptibility of individuals with lung dysfunction to systemic inflammation associated with ambient fine particle exposure: A panel study in Beijing.

2021 
Abstract Background The underlying mechanism on the susceptibility of chronic obstructive pulmonary disease (COPD) patients to air pollution has yet to be clarified. Objectives Based on the COPD in Beijing (COPDB) study, we examined whether lung dysfunction contributed to pollutant-associated systemic inflammation in COPD patients. Methods Proinflammatory biomarkers including interleukin-8 (IL-8) and tumor necrosis factor α (TNFα) were measured in serum samples collected from 53 COPD and 82 healthy participants. Concentrations of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5), carbonaceous components in PM2.5, and PM size distribution were continuously monitored. Linear mixed effects models were used to examine the associations of biomarker differences with particle exposure, between COPD and healthy participants, and across subgroups with different levels of lung dysfunction. Results COPD patients showed higher differences in IL-8 and TNFα levels associated with exposure to measured pollutants, comparing to healthy controls. In advanced analysis, particle-associated differences in IL-8 and TNFα levels were higher in participants with poorer lung ventilation and diffusion capacity, and higher ratio of residual volume. For example, an interquartile range increase in average PM2.5 concentration 2 weeks before visits was associated with a 15.7% difference in IL-8 level in participants with the lowest ratio of measured value to predicted value of forced expiratory volume in 1 s (FEV1%pred) (65.2%), and the association decreased monotonically with increasing FEV1%pred. Associations between differences in TNFα level and average ultrafine particle concentration 1 week before visits increased gradually with increasing ratio of measured value to predicted value of residual volume/total lung capacity. Conclusions COPD patients, especially those with poorer lung function, are more susceptible to systemic inflammation associated with fine particle exposure.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    1
    Citations
    NaN
    KQI
    []