Position control of a quadcopter drone using evolutionary algorithms-based self-tuning for first-order Takagi–Sugeno–Kang fuzzy logic autopilots

2019 
Abstract Trajectory tracking control of a quadcopter drone is a challenging work due to highly-nonlinear dynamics of the system, coupled with uncertainties in the flight environment (e.g. unpredictable wind gusts, measurement noise, modelling errors, etc). This paper addresses the aforementioned research challenges by proposing evolutionary algorithms-based self-tuning for first-order Takagi–Sugeno–Kang-type fuzzy logic controller (FLC). We consider three major state-of-the-art optimisation algorithms, namely, Genetic Algorithm, Particle Swarm Optimisation, and Artificial Bee Colony to facilitate automatic tuning. The effectiveness of the proposed control schemes is tested and compared under several different flight conditions, such as, constant, varying step and sine functions. The results show that the ABC-FLC outperforms the GA-FLC and PSO-FLC in terms of minimising the settling time in the absence of overshoots.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    13
    Citations
    NaN
    KQI
    []