Predicting hepatotoxicity using ToxCast in vitro bioactivity and chemical structure.

2015 
The U.S. Tox21 and EPA ToxCast program screen thousands of environmental chemicals for bioactivity using hundreds of high-throughput in vitro assays to build predictive models of toxicity. We represented chemicals based on bioactivity and chemical structure descriptors, then used supervised machine learning to predict in vivo hepatotoxic effects. A set of 677 chemicals was represented by 711 in vitro bioactivity descriptors (from ToxCast assays), 4,376 chemical structure descriptors (from QikProp, OpenBabel, PaDEL, and PubChem), and three hepatotoxicity categories (from animal studies). Hepatotoxicants were defined by rat liver histopathology observed after chronic chemical testing and grouped into hypertrophy (161), injury (101) and proliferative lesions (99). Classifiers were built using six machine learning algorithms: linear discriminant analysis (LDA), Naive Bayes (NB), support vector machines (SVM), classification and regression trees (CART), k-nearest neighbors (KNN), and an ensemble of these class...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    90
    Citations
    NaN
    KQI
    []