Biodegradable and re-usable sponge materials made from chitin for efficient removal of microplastics

2021 
Abstract Microplastics have attracted widespread attention due to their detrimental effects on organisms, and their efficient removal poses great challenges, especially those smaller than 3 µm that are more harmful for aquatic biota. Herein, the chitin based sponges with interconnected pores, excellent elasticity and mechanical durability were fabricated and composed with graphene oxide (GO) and oxygen-doped carbon nitride (O-C3N4). The chitin based sponges could effectively remove different functionalized microplastics (~1 µm) at pH 6–8, including carboxylate-modified polystyrene (PS-COOH), amine-modified polystyrene (PS-NH2), and polystyrene (PS). Notably, the removal efficiency of three microplastics by the chitin based sponges reached up to 71.6–92.1% at an environmentally relevant concentration of 1 mg L−1 in water system. The potential driving forces of the adsorption were electrostatic interactions, hydrogen bond interactions, and π-π interactions. In addition, the chitin based sponges are reusable and after re-used for 3 cycles due to their excellent compressibility. The algae toxicity test demonstrated good biocompatibility of the chitin based sponges and they are also biodegradable in a natural soil. This study provides a green and promising method for fabricating environmentally friendly adsorbents for small-size microplastics removal, and expands the insights into the mechanisms of microplastic adsorption onto the sponge materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    0
    Citations
    NaN
    KQI
    []