Posture-specific phantoms representing female and male adults in Monte Carlo-based simulations for radiological protection.

2010 
Does the posture of a patient have an effect on the organ and tissue absorbed doses caused by x-ray examinations? This study aims to find the answer to this question, based on Monte Carlo (MC) simulations of commonly performed x-ray examinations using adult phantoms modelled to represent humans in standing as well as in the supine posture. The recently published FASH (female adult mesh) and MASH (male adult mesh) phantoms have the standing posture. In a first step, both phantoms were updated with respect to their anatomy: glandular tissue was separated from adipose tissue in the breasts, visceral fat was separated from subcutaneous fat, cartilage was segmented in ears, nose and around the thyroid, and the mass of the right lung is now 15% greater than the left lung. The updated versions are called FASH2_sta and MASH2_sta (sta = standing). Taking into account the gravitational effects on organ position and fat distribution, supine versions of the FASH2 and the MASH2 phantoms have been developed in this study and called FASH2_sup and MASH2_sup. MC simulations of external whole-body exposure to monoenergetic photons and partial-body exposure to x-rays have been made with the standing and supine FASH2 and MASH2 phantoms. For external whole-body exposure for AP and PA projection with photon energies above 30 keV, the effective dose did not change by more than 5% when the posture changed from standing to supine or vice versa. Apart from that, the supine posture is quite rare in occupational radiation protection from whole-body exposure. However, in the x-ray diagnosis supine posture is frequently used for patients submitted to examinations. Changes of organ absorbed doses up to 60% were found for simulations of chest and abdomen radiographs if the posture changed from standing to supine or vice versa. A further increase of differences between posture-specific organ and tissue absorbed doses with increasing whole-body mass is to be expected.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    23
    Citations
    NaN
    KQI
    []