Inferring sun direction to improve visual odometry: A deep learning approach

2018 
We present a method to incorporate global orientation information from the sun into a visual odometry pipeline using only the existing image stream, in which the sun is typically not visible. We leverage recent advances in Bayesian convolutional neural networks (BCNNs) to train and implement a sun detection model (dubbed Sun-BCNN) that infers a 3D sun direction vector from a single RGB image. Crucially, our method also computes a principled uncertainty associated with each prediction, using a Monte Carlo dropout scheme. We incorporate this uncertainty into a sliding window stereo visual odometry pipeline where accurate uncertainty estimates are critical for optimal data fusion. We evaluate our method on 21.6 km of urban driving data from the KITTI odometry benchmark where it achieves a median error of approximately 12° and yields improvements of up to 42% in translational average root mean squared error (ARMSE) and 32% in rotational ARMSE compared with standard visual odometry. We further evaluate our met...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    4
    Citations
    NaN
    KQI
    []