Stimuli-Responsive, Hydrolyzable Poly(Vinyl Laurate-co-vinyl Acetate) Nanoparticle Platform for In Situ Release of Surfactants.

2021 
A stimuli-responsive, sub-100 nm nanoparticle (NP) platform with a hydrolyzable ester side chain for in situ generation of surfactants is demonstrated. The NPs were synthesized via copolymerization of vinyl-laurate and vinyl-acetate [p-(VL-co-VA), 3:1 molar ratio] and stabilized with a protective poly(ethylene-glycol) shell. The NPs are ∼55 nm in diameter with a zeta potential of -54 mV. Hydrolysis kinetics in an accelerated, base-catalyzed reaction show release of about 11 and 30% of the available surfactant at 25 and 80 °C, respectively. The corresponding values in seawater are 22 and 76%. The efficiency of the released surfactant in reducing the interfacial tension, altering wettability, and stabilizing oil-water emulsion was investigated through contact angle measurements and laser confocal scanning microscopy and benchmarked to sodium laurate, a commercially available surfactant. All these measurements demonstrate both the efficacy of the NP system for surfactant delivery and the ability of the released surfactant to alter wettability and stabilize an oil-water emulsion.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    0
    Citations
    NaN
    KQI
    []