Integrated lipidomics, transcriptomics and network pharmacology analysis to reveal the mechanisms of Danggui Buxue Decoction in the treatment of diabetic nephropathy in type 2 diabetes mellitus

2022 
Abstract Ethnopharmacological relevance Danggui Buxue Decoction (DBT) is classical prescriptions, which contains two Traditional Chinese Medicines of Angelicae sinensis radix and Astragali radix. According to the preliminary work of our laboratory and numerous studies, it has been found that DBT has a therapeutic effect on diabetic nephropathy (DN). However, the mechanisms underlying its action remain unclear. Aim of the study The aim of this study was to evaluate the impact of DBT on kidney disease in diabetic mice and further explore its protective mechanism. Methods DN mice model was induced by high-fat fodder and streptozotocin (STZ). Qualitative and quantitative analysis of 6 compounds in DBT was carried out by HPLC, including calycosin-7-glucoside, ferulic acid, ononin, calycosin, formononetin, and levostilide A. Hematoxylin-Eosin (HE) staining was used to determine the degree of kidney pathological damage. The UPLC-Q Exactive MS technique was used to analyze the lipids metabolism profile of kidneys samples and multiple statistical analysis methods were used to screen and identify biomarkers. Transcriptomics analyses were carried out using RNAseq. The possible molecular mechanism was unraveled by network pharmacology. Results Thirty-one significantly altered lipid metabolites were identified in the model group comparing with the control group. DBT improved aberrant expression of several pathways related to lipidomics, including glycerophospholipid metabolism and sphingolipid metabolism. Comprehensive analysis indicated that DBT intervention reduced the content of Cers, phosphatidylethanolamines and phosphatidylcholines in mouse kidneys by downregulating the transcription level of Degs2 and Cers, reducing lipid accumulation and promoting Akt phosphorylation by upregulating the expression of Acers and Pdk1. Network pharmacology analysis showed that components in DBT, such as kaempferol, ferulic acid and astragaloside IV, could be responsible for the pharmacological activity of DN by regulating the AGE-RAGE, PI3K/Akt, MAPK and NF-κB signaling pathways in diabetic complications. Conclusions These results showed that DBT may improve DN by affecting insulin resistance, chronic inflammation and lipid accumulation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    0
    Citations
    NaN
    KQI
    []