Impact Damage Detection in Composite Aerospace Structures by Multi-Resolution NDE Inspections

2021 
Assessing the health of aerospace structures and understanding the underlying mechanics that govern composite strength constitute a main focus of research in the area of aerospace design and airworthiness certification. Impact damage is one of the major threats to composite aerospace structures for its frequency of occurrence, complexity and minimum external visibility. While non-destructive evaluation (NDE) provides a variety of solutions to inspect the subsurface and internal components of structures non-invasively, a gap exists between the mechanics of damage formation, growth and tolerance, and the inspectability of the structure. This study is focused on the quantitative correlation between impact damage mechanics and ultrasonic NDE inspections, where damage severity, mode interaction and progression are identified in real-scale composite panels of complex geometry, representative of commercial aircraft, impacted to reproduce different damage types at the skin-to-stringer interface and the stringer cap. High resolution X-ray CT scanning and conventional ultrasonic scanning (UT) have been used to map the damage state and identify relevant impact damage features. Ultrasonic guided wave (UGW) scanning was then employed as a rapid in-situ inspection technique to not only detect damage but also provide quantitative information about damage severity and mode. The correlation of multi-resolution multi-dimensional NDE data promises new insights on damage studies and solutions to damage detection and prognosis through viable NDE inspections.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []