Mechanisms involved in follistatin-induced hypertrophy and increased insulin action in skeletal muscle

2019 
Background Skeletal muscle wasting is often associated with insulin resistance. A major regulator of muscle mass is the transforming growth factor β (TGF-β) superfamily, including activin A, which causes atrophy. TGF-β superfamily ligands also negatively regulate insulin-sensitive proteins, but whether this pathway contributes to insulin action remains to be determined. Methods To elucidate if TGF-β superfamily ligands regulate insulin action we used an adeno-associated virus gene editing approach to overexpress the activin A inhibitor, follistatin (Fst288) in mouse muscle of lean and diet-induced obese mice. We determined basal and insulin-stimulated 2 deoxy-glucose uptake using isotopic tracers in vivo. Furthermore, to evaluate whether circulating Fst and activin A concentrations are associated with obesity, insulin resistance, and weight loss in humans we analysed serum from morbidly obese subjects before, 1 week, and 1 year after Roux-en-Y gastric bypass (RYGB). Results Fst288 muscle overexpression markedly increased in vivo insulin-stimulated (but not basal) glucose uptake (+75%, p Conclusions We here present evidence that Fst is a potent regulator of insulin action in muscle and in addition to AKT and p70S6K, we identify TBC1D1, TBC1D4 and PAK1 as Fst targets. A possible role for Fst in regulating glycemic control is suggested because circulating Fst more than doubled post RYGB surgery, a treatment that markedly improved insulin sensitivity. These findings demonstrate the therapeutic potential of inhibiting TGF-β superfamily ligands to improve insulin action and Fst’s relevance to muscle wasting associated insulin resistant conditions in mice and humans.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    1
    Citations
    NaN
    KQI
    []