In-situ rheological and structural characterization of milk foams in a commercial foaming device

2020 
Abstract Processing, stability and sensorial perception of food foams are tightly related to their microstructure and flow behavior. Characterization of corresponding physical parameters is central for product development and quality control. An experimental setup enabling in-situ characterization of yield stress, gas volume fraction and bubble size distribution at different heights within a foam column created in a commercial whipping device is presented. Reliable determination of these quantities is shown. Foams made from regular and reconstituted milk have been investigated. Gas volume fraction and bubble size increase monotonically during free drainage. Related to the changes in these parameters, the yield stress increases strongly during initial drainage and weaker in mature foams. Gradients of the structural and rheological parameters along the direction of gravity increase over time. Yield stresses in these milk foams are significantly higher than predicted from phenomenological modelling including the above parameters and we attribute this to interfacial elasticity contributions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    4
    Citations
    NaN
    KQI
    []