Identifying and Tracking Defects in Dynamic Supramolecular Polymers

2020 
A central paradigm of self-assembly is to create ordered structures starting from molecular monomers that spontaneously recognize and interact with each other via noncovalent interactions. In the recent years, great efforts have been directed towards perfecting the design of a variety of supramolecular polymers and materials with different architectures. The resulting structures are often thought of as ideally perfect, defect-free supramolecular fibers, micelles, vesicles, etc., having an intrinsic dynamic character, which are typically studied at the level of statistical ensembles to assess their average properties. However, molecular simulations recently demonstrated that local defects that may be present or may form in these assemblies, and which are poorly captured by conventional approaches, are key to controlling their dynamic behavior and properties. The study of these defects poses considerable challenges, as the flexible/dynamic nature of these soft systems makes it difficult to identify what eff...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    23
    Citations
    NaN
    KQI
    []