Nrf2 stabilization prevents critical oxidative damage in Down syndrome cells.

2018 
Author(s): Zamponi, Emiliano; Zamponi, Nahuel; Coskun, Pinar; Quassollo, Gonzalo; Lorenzo, Alfredo; Cannas, Sergio A; Pigino, Gustavo; Chialvo, Dante R; Gardiner, Katheleen; Busciglio, Jorge; Helguera, Pablo | Abstract: Mounting evidence implicates chronic oxidative stress as a critical driver of the aging process. Down syndrome (DS) is characterized by a complex phenotype, including early senescence. DS cells display increased levels of reactive oxygen species (ROS) and mitochondrial structural and metabolic dysfunction, which are counterbalanced by sustained Nrf2-mediated transcription of cellular antioxidant response elements (ARE). Here, we show that caspase 3/PKCδdependent activation of the Nrf2 pathway in DS and Dp16 (a mouse model of DS) cells is necessary to protect against chronic oxidative damage and to preserve cellular functionality. Mitochondria-targeted catalase (mCAT) significantly reduced oxidative stress, restored mitochondrial structure and function, normalized replicative and wound healing capacity, and rendered the Nrf2-mediated antioxidant response dispensable. These results highlight the critical role of Nrf2/ARE in the maintenance of DS cell homeostasis and validate mitochondrial-specific interventions as a key aspect of antioxidant and antiaging therapies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    30
    Citations
    NaN
    KQI
    []