Extension of survival in bilaterally adrenalectomized mice by implantation of SF-1/Ad4BP-induced steroidogenic cells

2020 
Mesenchymal stroma/stem cells (MSCs) exist in adult tissues, such as adipose tissue and bone marrow, and differentiate into cells of multiple lineages. In previous studies, we found that MSCs differentiate into steroidogenic cells by forced expression of steroidogenic factor 1 (SF-1)/adrenal 4 binding protein (Ad4BP), the master regulator of steroidogenesis and differentiation of pituitary gonadotrophs, adrenal glands, and gonads. In this study, SF-1/Ad4BP-induced steroidogenic cells derived from mouse adipose tissue-derived MSCs (ADSCs) were implanted under the kidney capsule of bilateral adrenalectomized (bAdx) mice. bAdx mice did not survive after 7 days. However, 4 of 9 bAdx mice implanted with SF-1/Ad4BP-induced steroidogenic cells, 1 of 10 bAdx mice transplanted with control ADSCs, and bAdx mice transplanted with an adrenal gland survived for 30 days. Plasma corticosterone levels in bAdx mice implanted with SF-1/Ad4BP-induced steroidogenic cells and control ADSCs were 5.41 +/- 2.26 ng/mL (mean +/- SEM) and undetectable at 7 days after implantation, respectively. After removal of the kidney bearing the graft from the surviving mice at 30 days after implantation, plasma corticosterone was not detected in any of the samples. Immunohistochemical staining revealed SF-1/Ad4BP-positive cells under the capsule of the kidney. Although we performed an adrenocorticotropin (ACTH) loading test on bAdx mice implanted with SF-1/Ad4BP-induced steroidogenic cells, ACTH responsiveness was not observed. Implantation of steroidogenic cells derived from ADSCs into bAdx mice increased the basal plasma corticosterone level and extended the survival of bAdx mice, suggesting the capability of restoring steroidogenic cells by cell transplantation therapy for adrenal insufficiency.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    2
    Citations
    NaN
    KQI
    []