The integration of hybrid hydrogen networks for refinery and synthetic plant of chemicals

2020 
Abstract Hydrogen is the core source to both refinery and synthetic plant of chemicals. Refinery consumes high purity hydrogen while synthetic plant of chemicals needs syngas consists of hydrogen and carbon oxides. As main hydrogen production technologies, industrial coal gasification and steam methane reforming based pathways generate H2, CO and CO2, which is actually the mixture of hydrogen and carbon oxides. Hence, the gases demand of refinery and synthetic plant of chemicals and their supply from hydrogen production can form hybrid hydrogen networks. On the basis of complementary reuse, this paper firstly proposes integration of hybrid hydrogen network for refinery and synthetic plant of chemicals. Superstructures of individual and hybrid hydrogen networks are employed as problem illustration and corresponding linear programming (LP) mathematical models are formulated. Practical refinery and synthetic plant of chemicals cases are employed to demonstrate its application. Compared with individual networks, the natural gas conservation case can recover 8660.4 Nm3·h-1 hydrogen in purge gas, reduce 1386.6 Nm3·h-1 CO2 emission, equaling to reduction of 278.11 kmol·h-1 natural gas feedstock and 14.8% of total gas production load; the coal conservation case can even waive the total coal consumption and extra 104.1 kmol·h-1 natural gas, recover 8660.4 Nm3·h-1 hydrogen in purge gas, reduce 5255.8 Nm3·h-1 of CO2 emission and decrease 21.2% of the total gas production load. Furthermore, economic evaluation is also placed to account for the economic advantage of hybrid network.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    3
    Citations
    NaN
    KQI
    []