Quantifying Three-dimensional Chromatin Organization Utilizing Scanning Transmission Electron Microscopy: ChromSTEM

2019 
Chromatin organization over a wide range of length scales plays a critical role in the regulation of gene expression and deciphering these processes requires high-resolution, three-dimensional, quantitative imaging of chromatin structure in vitro. Herein we introduce ChromSTEM, a method which utilizes high angle annular dark field imaging and tomography in scanning transmission electron microscopy in combination with DNA-specific staining for electron microscopy. We utilized ChromSTEM to quantify chromatin structure in cultured cells and tissue biopsies through local DNA distribution and the scaling behavior of chromatin polymer. We observed that chromatin is densely packed with an average volume concentration of over 30% with heterochromatin having a two-fold higher density compared to euchromatin. Chromatin was arranged into spatially well-defined nanoscale packing domains with fractal internal structure and genomic size between 100 and 400 kb, comparable to that of topologically associated domains. The packing domains varied in DNA concentration and fractal dimension and had one of the distinct states of chromatin packing with differential ratio of DNA content to the chromatin volume concentration. Finally, we observed a significant intercellular heterogeneity of chromatin organization even within a genetically uniform cell population, which demonstrates the imperative for high-throughput characterization of chromatin structure at the single cell level.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    6
    Citations
    NaN
    KQI
    []