Experimental Study on Thermal and Catalytic Decomposition of a Dual-Mode Ionic Liquid Propellant

2021 
With the increasing of space activities and people’s awareness of environmental protection, it is necessary to develop a new non-toxic space propulsion system with high performance. Hydroxylammonium nitrate (HAN)/1-ethyl-3-methyl-imidazolium ethylsulfate([Emim][EtSO4]) blend ionic liquid propellant is a potential replacement with non-toxic and high-performance characteristics for hydrazine type liquid propellants, which can be used in both chemical and electrical propulsion system. This paper introduced the thermogravimetric experimental analysis (TGA-DSC) results of HAN/[Emim][EtSO4] ionic liquid propellant with the thermal decomposition and catalytic decomposition process. Its mass-loss process and exothermic process under different reaction conditions at a heating rate of 5K/min~15K/min were studied. Generally, the mass-loss results showed that there were four characteristic stages during the decomposition process of the HAN/[Emim][EtSO4] ionic liquids, which were the evaporation of the water solvent, decomposition of the HAN component, further decomposition of the [Emim][EtSO4], and slow loss of the residual substances. At the same time, two exothermic peaks were observed, which respectively corresponded to the decomposition of HAN and the further decomposition of [Emim][EtSO4]. Using catalyst can significantly reduce the decomposition temperature of the propellant and the residual mass. The contents in this paper proved that this propellant had a good application prospect within the catalytic ignition aerospace thruster.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    0
    Citations
    NaN
    KQI
    []