Gas diffusion layer/flow-field unified membrane-electrode assembly in fuel cell using graphene foam

2019 
Abstract The integration of a gas diffusion layer with a flow-field is essential for enhancing the polymer electrolyte membrane fuel cell performance. This is achieved by exploiting the ability of a gas diffusion layer-flow-field combination to decrease the size of the reactant pathway and the thickness of the membrane-electrode assembly, thereby reducing electrical and mass transport resistance. This study proposes a unified membrane-electrode assembly that incorporates graphene foam that functions as both a flow-field and a gas diffusion layer. The unified membrane-electrode assembly exhibits higher performance than conventional membrane-electrode assembly on overall current densities region, which is attributed to the increased the pressure drop. Furthermore, its estimated volume power density can be increased because of the 82% decrease in its thickness. Also, the simulation results show that this design enhances the exchange current density due to pressure drop in the graphene foam.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    11
    Citations
    NaN
    KQI
    []