Comparison of polysorbate 80 hydrolysis and oxidation on the aggregation of a monoclonal antibody

2019 
Abstract Polysorbates are used ubiquitously in protein therapeutic drugs to help minimize adsorption to surfaces and aggregation. It has been recognized that polysorbate can itself degrade and in turn result in loss of efficacy of therapeutic proteins. We studied the two main pathways of Polysorbate 80 (PS80) degradation, enzymatic ester hydrolysis and oxidation. Degraded polysorbates were quantified through mass spectrometry to identify the loss of individual components. Next Langmuir trough adsorption isotherms were used to characterize changes in the surface activity of the degraded polysorbates. PS80 degraded via hydrolysis results in slower surface adsorption rates, while the oxidized PS80 show increased surface activity. However, the critical micelle concentration remained unchanged. A monoclonal antibody was formulated with stock and degraded polysorbates to probe their ability to prevent aggregation. Hydrolyzed polysorbate resulted in a large increase in particle formation during shaking stress. Oxidized PS80 was still protective against aggregation for the monoclonal antibody. Monomer loss as measured by SEC was comparable in formulations without PS80 to those with esterase hydrolyzed PS80. Monomer loss for oxidized PS80 was similar to that of non-degraded PS80. Hydrolysis of PS80 resulted in free fatty acids which formed insoluble particles during mechanical agitation which stimulated protein aggregation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    19
    Citations
    NaN
    KQI
    []