How the re-irradiation of a single ablation spot affects cavitation bubble dynamics and nanoparticles properties in laser ablation in liquids

2019 
Abstract Fundamental theoretical and experimental studies on the formation of nanoparticles and cavitation during laser synthesis of colloids usually employ single-pulse conditions, whereas studies of the properties of nanoparticles naturally require prolonged ablation. We explored how a defined number of pulses changes a silver target’s surface geometry and thereby the dynamics of the laser-induced cavitation bubble and the resulting properties of the nanoparticles. The shape of the cavitation bubble transforms from hemispherical to almost spherical. The indirectly calculated mass concentration in the cavitation bubble follows a decay with the number of laser pulses. Surprisingly, the ablated mass does not set the volume of the extended cavitation bubble, as one would expect, because of the linear dependency of both the volume of the bubble and the ablation mass per pulse on the laser fluence. No influence of the altered cavitation bubble on the nanoparticles was identified. Instead, clear evidence of a high share of silver nanoclusters (d
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    18
    Citations
    NaN
    KQI
    []