Productivity, Profitability and Nitrogen Utilisation Efficiency of Two Pasture-Based Milk Production Systems Differing in the Milking Frequency and Feeding Level

2021 
The aim of this study was to model the productivity, profitability and the nitrogen (N) utilisation efficiency (NUE) of two spring-calving pasture-based milk production systems differing in milking frequency and intensification levels in New Zealand. For this purpose, physical performance data from a low-intensity production system where cows were milked once per day (OAD-LI) and from a high-intensity production system where cows were milked twice per day (TAD-HI) were employed. OAD-LI cows were milked once-daily with a stocking rate (SR) of 2.1 cows/ha and fed diets with low supplementation (304 kg pasture silage/cow) with applications of 134 kg N fertiliser/ha and TAD-HI cows were milked twice-daily with a SR of 2.8 cows/ha and fed diets of higher supplementation (429 kg pasture silage and 1695 kg concentrate/cow) with applications of 87 kg N fertiliser/ha. The Moorepark Dairy System Model was used to evaluate production, economic performance and N balance on an annual basis. Despite the higher feed costs of TAD-HI as more supplementation was utilised, profitability per hectare was 16% higher because more cows were milked with a higher milk yield per cow (milking frequency) when compared to OAD-LI. At the cow level, the NUE was higher in TAD-HI (30% vs. 27%) reflecting the better balanced diet for energy and crude protein and higher milk yields as a result of milking frequency. At the farm scale the NUE was higher (38% vs. 26%) in the TAD-HI due to the losses associated with the imported feed being excluded and higher N captured in milk. These results suggest that milking frequency, the use of feed supplementation and application of N fertiliser as management tools on grazing dairy systems affect productivity, profitability and N balance. Further studies are required to find optimal stocking rates in combination with the use of supplementary feed and N fertiliser application that maximize milk production and profitability for OAD and TAD milking production systems but minimize N losses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    1
    Citations
    NaN
    KQI
    []