Multibody dynamic analysis of a gear transmission system in electric vehicle using hybrid user-defined elements

2019 
Considering flexibility of the support shafts as well as bearing supports, the effect of meshing impact force and meshing stiffness on the dynamic behavior of a gear transmission system in electric vehicle is investigated in this paper using the proposed hybrid user-defined element method. First, a structured grid generation method is introduced to establish accurate mesh models of the pinion and gear teeth. Second, coupling the tooth mesh models and the flexible shafts as well as bearings, two finite element models are, respectively, constructed for the two helical gear pairs of the electric vehicle reduction unit to calculate the meshing impact force. Next, the basic mechanism of meshing impact is explained in detail according to the finite element results, and the impact force is determined as one of the main internal excitations substituted into the dynamic model established by the hybrid user-defined element method. Under 50 N m input torque and 12,010 r/min rotational speed of the input shaft, the s...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    2
    Citations
    NaN
    KQI
    []