Design and performance of a multi-terahertz Fourier transform spectrometer for axion dark matter experiments.

2021 
Dedicated spectrometers for terahertz radiation with [0.3, 30] THz frequencies using traditional optomechanical interferometry are substantially less common than their infrared and microwave counterparts. This paper presents the design and initial performance measurements of a tabletop Fourier transform spectrometer (FTS) for multi-terahertz radiation using infrared optics in a Michelson arrangement. This is coupled to a broadband pyroelectric photodetector designed for [0.1, 30] THz frequencies. We measure spectra of narrowband and broadband input radiation to characterize the performance of this instrument above 10 THz, where signal-to-noise is high. This paves the groundwork for planned upgrades to extend below 10 THz. We also briefly discuss potential astroparticle physics applications of such FTS instruments to broadband axion dark matter searches, whose signature comprises low-rate monochromatic photons with unknown frequency.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    1
    Citations
    NaN
    KQI
    []