Low Dimensional Carbon Materials for Applications in Mass and Energy Transport

2014 
Low dimensional materials are those that possess at least one physical boundary small enough to confine the electrons or phonons. This quantum confinement reduces the dimensionality of the material and imparts unique and novel properties that are not seen in their bulk forms. Examples include quantum dots (0-D), carbon nanotubes (1-D), and graphene (2-D). Accordingly, these materials exhibit new concepts in mass and energy transport that can be exploited for technological applications. In this Perspective, we review several topics related to mass and energy transport in and around carbon-based low dimensional materials. Recent developments in the study of matter being transported through carbon nanotube and graphene nanopores are reviewed, as well as applications of excitonic, thermal, and electronic energy transport in carbon nanotubes. The nanometer-scale interior of a single-walled carbon nanotube (SWCNT) has been studied as a unique nanopore, exhibiting periodic ionic conduction currents and dimension...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    0
    Citations
    NaN
    KQI
    []