Characterization of random rough surfaces from scattered intensities by neural networks

2001 
Abstract Optical scatterometry, a non-invasive characterization method, is used to infer the statistical properties of random rough surfaces. The Gaussian model with rms-roughness [sgrave] and correlation length σ is considered in this paper but the employed technique is applicable to any representation of random rough surfaces. Surfaces with wide ranges of Λ and σ, up to 5 wavelengths (λ), are characterized with neural networks. Two models are used: self-organizing map (SOM) for rough classification and multi-layer perceptron (MLP) for quantitative estimation with nonlinear regression. Models infer Λ and σ from scattering, thus involving the inverse problem. The intensities are calculated with the exact electromagnetic theory, which enables a wide range of parameters. The most widely known neural network model in practise is SOM, which we use to organize samples into discrete classes with resolution ΔΛ = Δσ = 0.5λ. The more advanced MLP model is trained for optimal behaviour by providing it with known pa...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    2
    Citations
    NaN
    KQI
    []