The abiotic degradation of methyl parathion in anoxic sulfur-containing system mediated by natural organic matter

2017 
Abstract Although the kinetics and transformation of methyl parathion have been investigated extensively, its abiotic degradation mechanism in anoxic sulfur-containing groundwater system is still not clear. In this work, the abiotic degradation of methyl parathion in anoxic sulfur-containing system mediated by natural organic matter (NOM) was investigated in batch experiments. It was found that the removal of methyl parathion (up to 80.7%) was greatly improved in sulfide containing NOM compared to those in sulfide alone (with 15.5%) and in NOM alone (almost negligible). Various sulfur species presented significant differences in behaviors methyl parathion degradation, but followed by the pseudo-first-order model well. No facilitated degradation of methyl parathion was observed in sulfite (SO 3 2- ) or thiosulfate (S 2 O 3 2- ) containing NOM such as anthraquinone. Although elemental sulfur (S 0 ) and cysteine could further improve the degradation rate of methyl parahtion, their impacts was very limited. The removal efficiency of methyl parathion in anoxic sulfur-containing system were related remarkably with NOM concentration and solution pH. Based on the transformation products identified by gas chromatography-mass spectrometer (GC/MS) and liquid chromatography high resolution mass spectrometer (LC/HRMS), both the nitro group reduction and hydrolysis (S N @C) processes by sulfide (HS − ) were further proved to be two predominant reaction mechanisms for the abiotic degradation of methyl parathion in anoxic sulfur-containing system. The results of this study help to understand the natural attenuation of methyl parathion under anoxic sulfide-containing groundwater system mediated by NOM.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    9
    Citations
    NaN
    KQI
    []