Quantification of aortic valve area: comparison of different methods of echocardiography with 3-D scan of the excised valve.

2020 
Accurate determination of severity of aortic valve stenosis (AS) by aortic valve area (AVA) is essential for choosing the best treatment strategy. We compared AVA quantified by 4 different in vivo echocardiographic methods with AVA measured by 3D ex vivo scanning of the excised AV. The data on 38 patients who underwent aortic valve replacement were assessed. The AVA was determined by 4 echocardiographic methods of planimetry in 2D transesophageal echocardiography [planimetry (2D-TEE)], plainemetry by multiplanar reconstruction approach in 3D transesophageal echocardiography [MPR (3D-TEE)], and two continuity equation (CE) approaches; conventional CE (2D-TTE) in which left ventricular outflow tract [LVOT] area derived by LVOT diameter obtained in 2D transthoracic echocardiography and CE (3D-TEE) in which LVOT area obtained by 3D MPR. After the surgical removal of the AV, AVA was determined by 3D ex vivo scanning. Lowest AVA mean difference with 3D ex vivo scanning was found between CE (2D-TTE), followed by CE (3D-TEE). Planimetry (2D-TEE) in male patients as well as severely and non-severely calcified valves revealed a significant higher AVA mean difference with 3D ex vivo scanning than CE (2D-TTE) and CE (3D-TEE) methods. However, with a nonsignificant effect, CE (2D-TTE) and planimetry (2D-TEE) had the least mean difference with 3D ex vivo scanning possibly due to less frequent bicuspid AV in females. CE (2D-TTE) was more accurate than other methods of AVA calculation. Moreover, CE (3D-TEE) and MPR (3D-TEE) methods had acceptable accuracy in comparison with planimetry (2D-TEE) for definition of AS severity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    1
    Citations
    NaN
    KQI
    []