Optical nanoantenna with dual surface plasmon resonances for enhancements in near-field intensity and far-field radiation

2021 
Plasmonic nanostructures with dual surface plasmon resonances capable of simultaneously realizing strong light confinement and efficient light radiation are attractive for light-matter interaction and nanoscale optical detection. Here, we propose an optical nanoantenna by adding gold nanoring to the conventional Fano-type resonance antenna. With the help of gold nanoring, the following improvements are simultaneously realized: (1). The near-field intensity of the Fano-type antenna is further enhanced by the Fabry Perot-like resonance formed by the combination of the gold nanoring and the substrate waveguide layer. (2). Directional radiation is realized by the collaboration of the gold nanoring and the Fano-type antenna, thus improving the collection efficiency of the far-field signal. (3). The multi-wavelength tunable performance of the Fano resonance antenna is significantly improved by replacing the superradiation mode in the Fano resonance with the dipole resonance induced by the gold nanoring. The optical properties of the nanoantennas are demonstrated by numerical simulations and practical devices. Therefore, the proposed optical nanoantenna provides a new idea for further improving the performance of conventional Fano-type nanoantennas and opens new horizons for designing plasmonic devices with enhancements in both near- and far-field functionalities, which can be applied in a wide range of applications such as surface-enhanced spectroscopy, photoluminescence, nonlinear nanomaterials/emitters and biomedicine sensing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    0
    Citations
    NaN
    KQI
    []