Highly crystalline carbon nitride hollow spheres with enhanced photocatalytic performance

2021 
Abstract Graphitic carbon nitride (g-C3N4) has emerged as a remarkably promising photocatalyst for addressing environmental and energy issues; however, it exhibits only moderate photocatalytic activity because of its low specific surface area and high recombination of carriers. Preparation of crystalline g-C3N4 by the molten salt method has proven to be an effective method to improve the photocatalytic activity. However, crystalline g-C3N4 prepared by the conventional molten salt method exhibits a less regular morphology. Herein, highly crystalline g-C3N4 hollow spheres (CCNHS) were successfully prepared by the molten salt method using cyanuric acid-melamine as a precursor. The higher crystallization of the CCNHS samples not only repaired the structural defects at the surface of the CCNHS samples but also established a built-in electric field between heptazine-based g-C3N4 and triazine-based g-C3N4. The hollow structure improved the level of light energy utilization and increased the number of active sites for photocatalytic reactions. Because of the above characteristics, the as-prepared CCNHS samples simultaneously realized photocatalytic hydrogen evolution with the degradation of the plasticizer bisphenol A. This research offers a new perspective on the structural optimization of supramolecular self-assembly.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    25
    Citations
    NaN
    KQI
    []