Cardiorespiratory and Vascular Variability Analysis to Classify Patients with Ischemic and Dilated Cardiomyopathy

2020 
Heart diseases are the leading cause of death in developed countries. Ascertaining the etiology of cardiomyopathies is still a challenge. The objective of this study was to classify cardiomyopathy patients through cardio, respiratory and vascular variability analysis, considering the vascular activity as the input and output of the baroreflex response. Forty-one cardiomyopathy patients (CMP) classified as ischemic (ICM, 24 patients) and dilated (DCM, 17 patients) were analyzed. Thirty-nine elderly control subjects (CON) were used as reference. From the electrocardiographic, respiratory flow, and blood pressure signals, following temporal series were extracted: beat-to-beat intervals (BBI), total respiratory cycle time series (TT), and end– systolic (SBP) and diastolic (DBP) blood pressure amplitudes, respectively. Three-dimensional representation of the cardiorespiratory and vascular activities was characterized geometrically, by fitting a polygon that contains 95% of data, and by statistical descriptive indices. The best classifiers were used to build support vector machine models. The optimal model to classify ICM versus DCM patients achieved 92.7% accuracy, 94.1% sensitivity, and 91.7% specificity. When comparing CMP patients and CON subjects, the best model achieved 86.2% accuracy, 82.9% sensitivity, and 89.7% specificity. These results suggest a limited ability of cardiac and respiratory systems response to regulate the vascular variability in these patients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    0
    Citations
    NaN
    KQI
    []