Exercise Induced Fluid Shifts are Distinct to Exercise Mode and Intensity - a Comparison of Blood Flow Restricted and Free Flow Resistance Exercise

2021 
Aim MRI can provide fundamental tools in decoding physiological stressors stimulated by training paradigms. Acute physiological changes induced by three diverse exercise protocols known to elicit similar levels of muscle hypertrophy were evaluated using muscle functional magnetic resonance imaging (mfMRI). Methods The study was a cross-over study with participants (n=10) performing three acute unilateral knee extensor exercise protocols to failure and a work matched control exercise protocol. Participants were scanned after each exercise protocol; 70% 1 repetition maximum (RM) (FF70); 20% 1RM (FF20); 20% 1RM with blood flow restriction (BFR20); free-flow (FF) control work matched to BFR20 (FF20WM). Post exercise mfMRI scans were used to obtain interleaved measures of muscle R2 (indicator of edema), R2' (indicator of deoxyhemoglobin), muscle cross sectional area (CSA) blood flow and diffusion. Results Both BFR20 and FF20 exercise resulted in a larger acute decrease in R2, decrease in R2', and expansion of the extracellular compartment with slower rates of recovery. BFR20 caused greater acute increases in muscle CSA than FF20WM and FF70. Only BFR20 caused acute increases in intracellular volume. Post-exercise muscle blood flow was higher after FF70 and FF20 exercise than BFR20. Acute changes in mean diffusivity were similar across all exercise protocols. Conclusion This study was able to differentiate the acute physiological responses between anabolic exercise protocols. Low-load exercise protocols, known to have relatively higher energy contributions from glycolysis at task failure, elicited a higher mfMRI response. Noninvasive mfMRI represents a promising tool for decoding mechanisms of anabolic adaptation in muscle.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    0
    Citations
    NaN
    KQI
    []