Combining ligand- and structure-based in silico methods for the identification of natural product-based inhibitors of Akt1

2019 
The traditional method of drug discovery process has been surpassed by a rational approach where computer-aided drug designing plays a vital role in the identification of leads from large compound databases. Further, natural products have an important role in drug discovery as these have been the source of most active ingredients of medicines. Herein, in silico structure- and ligand-based approaches have been applied to screen in-house IIIM natural product repository for Akt1 (serine/threonine protein kinases) which is a well-known therapeutic target for cancer due to its overexpression and preventing the cells from undergoing apoptosis. Combined ligand-based and structure-based strategies were applied on to the existing library comprising of about 700 pure natural products, and the compounds identified from screening were biologically evaluated for Akt1 inhibition using Akt1 kinase activity assay. Fourteen promising compounds showed significant inhibition at 500 nM through in vitro screening, and from them, eight were new for Akt1 inhibition. Through the MD studies of Akt1 with the most active compound IN00145, it was inferred that Lys179, Glu191, Glu228, Ala230, Glu234 and Asp292 are the important amino acid residues which provide stability to the Akt1-IN00145 complex. Lead optimization studies were also performed around the actives to design better and selective inhibitors for Akt1. The results emphasized the successful application of virtual screening to identify new Akt1 inhibitor scaffolds that can be developed into a drug candidate in drug discovery programme.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    5
    Citations
    NaN
    KQI
    []