Duckweed derived nitrogen self-doped porous carbon materials as cost-effective electrocatalysts for oxygen reduction reaction in microbial fuel cells

2020 
Abstract Cost-effective metal-free electrocatalysts for oxygen reduction reaction were incredible significance of improvement about microbial fuel cells. In this research, a novel nitrogen self-doped porous carbon material is effectively inferred with KOH activation from a natural and renewable biomass, duckweed. Self-doped nitrogen in carbon matrix of nitrogen-doped porous carbon at 800 °C provides abundant active sites for oxygen reduction and improves the oxygen reduction kinetics significantly. Moreover, the porous structure of nitrogen-doped porous carbon at 800 °C encourages the transition of electrolyte and oxygen molecules throughout the oxygen reduction reaction. Oxygen on the three-phase boundary is reduced to water according to a four-electron pathway on nitrogen-doped porous carbon electrocatalyst. The single-chamber microbial fuel cell with nitrogen-doped porous carbon as electrocatalyst achieves comparable power density (625.9 mW m−2) and better stability compared to the commercial Pt/C electrocatalyst. This simple and low-cost approach provides a straightforward strategy to prepare excellent nitrogen-doped electrocatalyst derived from natural and renewable biomass directly as a promising alternate to precious platinum-based catalysts in microbial fuel cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    14
    Citations
    NaN
    KQI
    []