Recent advances in rational design of efficient electrocatalyst for full water splitting across all pH conditions

2020 
The electrochemical reaction that involves the splitting of water into hydrogen and oxygen gas is the superior technique for sustainable energy conversion and storage without the environmentally damaging effects of fossil fuels. To date, a large number of electrocatalysts have been used for electrochemical water splitting (EWS). Nowadays, the quest for a universal pH stable bifunctional electrocatalyst that can efficiently enhance the hydrogen and oxygen evolution reactions (HERs and OERs) is gaining significant interest in the research community. This approach avoids the divergence in the pH of the electrolyte for OER and HER activity and effectively reduces the difficulty and system cost in practical EWS. This article highlights engineering strategies and challenges in designing prospective universal pH-stable electrocatalysts with feasible OER and HER pathways for full water splitting over a wide pH range.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    11
    Citations
    NaN
    KQI
    []