Intelligent fault diagnosis of rolling bearings using a semi-supervised convolutional neural network

2020 
The success of convolutional neural networks (CNNs) in intelligent fault diagnosis is largely dependent on massive amounts of labelled data. In a real-world case, however, massive amounts of labelled data are difficult or costly to collect, whereas abundant unlabelled data are often available. To utilize such unlabelled data, a novel method using a semi-supervised convolutional neural network (SSCNN) for intelligent fault diagnosis of bearings is proposed. First, a 1-d CNN is applied to learn class space features and generate class probabilities of unlabelled samples, based on which a class probability maximum margin criterion (CPMMC) method is used to construct the loss function of unlabelled samples. Then, the constructed loss function, which aims to maximise the inter-class distance of class space features and minimise the intra-class distance of class space features, is integrated into the cross-entropy loss function of the CNN, and the SSCNN is established. Finally, the SSCNN model is applied to analyse the vibration signals collected from rolling bearings, and a novel intelligent fault diagnosis method using the SSCNN is proposed. Two datasets are employed to validate the effectiveness of the proposed methodology. The results show that the established SSCNN can effectively utilise unlabelled samples to train the model and enhance its fault diagnosis performance. Through a comparison with commonly used semi-supervised deep learning methods, the superiority of the proposed method is validated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    3
    Citations
    NaN
    KQI
    []